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Abstract. Simple dynamical systems of point particles are irreversible if their motions cannot be
retraced merely by reversing their velocity components. More complicated systems, such as those
that exhibit steady hysteresis under the cyclic action of external influences, may be locally reversible,
globally irreversible, and yet traverse an ordered set of recurrent states. In still more complex
situations incorporating memory dependences, hysteresis effects are generally evolutionary or
non-recurrent: nevertheless, in special circumstances, it may be possible to achieve a restoration
of some prior states. An example based on the behaviour of an elastic–perfectly plastic torsion
spring shows that such restorations require processes that are qualitatively more complicated than
those associated with the original evolution of the systems. This asymmetry in the complexity of
processes provides another means for assigning a direction to the arrow of time.

1. Reversibility, irreversibility, and Poincar é’s non-existence theorem for ‘one-way’
evolution

A simple dynamical system, consisting ofN independent point particles, is considered to
be reversible if a reversal of all of its velocity components results in a retracing of the prior
trajectories in inverse order. Formally, this reversion corresponds to an invariance of the
equations of motion

ṗj = − ∂H
∂qj

+Qj j = 1, . . . ,3N (1.1)

under the transformationst → −t , q̇j → −q̇j , andpj = −pj , where, as usual,qj and
pj denote the generalized coordinates and momenta,H is the Hamiltonian, andQj(qi, q̇k, t)

accounts for any additional external forces that may be present. Common exceptions arise
when the kinetic energy contains terms linear inq̇ due to Coriolis forces in rotating reference
frames, orQj includes odd powers oḟq associated with the deflection of charges by magnetic
fields. In these cases, (1.1) is not invariant under time reversal, and the corresponding
dynamical systems are irreversible [1–4]. Of course, lack of retraceability of trajectories
does not bar the recovery of prior configurations. If it is assumed that the dynamical systems
are confined to bounded regions of phase space, Poincaré’s recurrence theorem ensures that
the trajectories through a point will return infinitely often to any neighbourhood of the point
[5]. Moreover, with mild continuity restrictions on the dynamical flows, this result can be
strengthened to show rigorously that it is impossible to construct any continuous function
that varies monotonically along trajectories [2, 6, 7]. Consequently, Hamiltonian systems of
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this type—even if they are irreversible in the preceding sense—are not sufficiently complex
to generate any ‘one-way’ function that might be identified with a non-equilibrium entropy.
Poincaŕe’s non-existence result vitiates the deterministic form of Boltzmann’s H-theorem [8],
and shows that the second law of thermodynamics cannot be derived from the evolution of
such smooth bounded Hamiltonian systems [2, 9, 10].

2.

2.1. Discontinuities and instabilities as sources of irreversibility

More realistic models of irreversible behaviour can be constructed by introducing additional
physical interactions and relaxing the mathematical restrictions of completely smooth
evolution: specifically, by weakening the presumptions of continuity to piece-wise continuity;
allowing jump discontinuities; and admitting functions with disconnected domains of
definition [11–13]. Mathematical generalizations of this type are associated with singularities
(‘catastrophes’), fractals [14], and also appear when smooth macroscopic variables such as
strain, stress or magnetization are correlated with mesoscopic counterparts such as Portevin–
LeChatelier discontinuities, acoustic emission or Barkhausen pulses [15]. Discontinuous
response is actually quite common even in simple idealized systems whose physical states are
determined by the competitive influences of internal and external forces. For example, quasi-
static gradient systems such as arrays ofN interacting pivoted dipoles (Ewing arrays [16]), or
point charges confined to a sphere (Thomson’s plum pudding atom [17]), generally have many
locally stable equilibrium states whose multiplicity tends to increase exponentially withN . If
a system of this type is initially prepared in one of these locally stable states, and an external
‘force’ Qj—which may be a mechanical lattice distortion or an electric or magnetic field—is
gradually applied, the system will generally accomodate by means of smooth perturbations of
its equilibrium configurations. But as soon as at least one of the force componentsQj , acting
on one or more of the individual dipoles or charges, reaches a critical threshold, the system will
escape from the stability valley surrounding the initial state via a mountain pass—or Hessian
instability point—and abruptly decant into one of the adjacent regions of stability. Since a
reversal of the force componentsQj generally propels the system along an entirely different
stability valley on the energy landscape, crossing a Hessian instability results in irreversible
evolution. The precise connection between instabilities and discontinuities in gradient systems
can be illustrated with the help of a simple example exhibiting hysteresis.

2.2. Hysteresis and irreversibility

Figure 1(a) is a schematic of an experimental arrangement consisting of two small cylindrical
bar magnets—each with dipole momentµ and free to rotate in the horizontalx–y plane—
mounted on low-friction bearings separated by a distancea. A uniform external magnetic field
H ext, generated by a set of Helmholtz coils, may be applied at an angleψ with respect to the
direction of the ordinate (+y) as shown. The total energy of this system, in emu units, is

U(φ,H ext, ψ) = − µ
2

2a3
{(1− 3 cos(2φ)) + [4h cos(φ − ψ)]} (2.1)

whereh ≡ H ext/µa−3 is the dimensionless ratio of the external field and the natural scale
of the internal, or interaction, field of the two dipoles (µ/a3). Evidently, the first term in
parentheses in (2.1) describes the interaction energy of the two dipoles, while the second term
in square brackets represents the coupling to the external field( Eµ · EH).
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Figure 1. (a) Two pivoted magnetic dipoles interacting with an external field. This is a plan view
of two cylindrical bar magnets, each with a magnetic momentµ ≈ 14.5 emu, length 0.89 cm,
mounted on low-friction bearings separated by a distancea = 5 cm. The external magnetic field
H ext is generated by a set of Helmholtz coils (not shown). (b) Two-magnet hysteresis cycle with
two irreversible jump discontinuities. This is a phase diagram of the stable trajectories determined
by equation (2.1). The insets show the magnet orientations at various points of the cycle. In
order to display the skew symmetry of the hysteresis, theφ-axis has been ‘folded over’, i.e., when
90◦ < |φ| < 180◦,φ is replaced by(180◦−|φ|)sgnφ. (c) A hysteresis cycle without discontinuous
jumps. This phase diagram shows the response of the two-magnet system to an external field
H ext restricted to varying in the vertical direction, i.e.,ψ = 0◦ or 180◦ in (a). According to the
discussion in the text,Q andP are quasi-reversible forks and also points of discontinuous magnetic
susceptibility [18]. The abscissa is folded as in (b).
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Figure 1. (Continued)

Solving for the extremals, namely solving

∂U

∂φ
= 0 (2.2)

one obtains

3 sin(2φ)− 2h sin(φ − ψ) = 0. (2.3)

The stability criterion

∂2U

∂φ2
> 0 (2.4)

leads to the constraint

3 cos(2φ)− h cos(φ − ψ) < 0. (2.5)

Since non-parallel dipole configurations are unstable for all values ofh, equations (2.1), (2.3)
and (2.5) include all the essential physical features of this arrangement. The discontinuities
implicit in the transcendental constraints in (2.3) and (2.5) are easier to recognize ifH ext is
nearly aligned with they-axis; i.e.|ψ | is small. In this case, the trigonometric functions can
be expanded to first order inψ , and (2.3) and (2.5) may be approximated by

3 sin(2φ) = 2h[sinφ − ψ cosφ] (2.6)

and

3 cos(2φ) < h[cosφ +ψ sinφ]. (2.7)

With the additional restriction tan2 φ > ψ2, these expressions can be combined into the simpler
inequality

0< sin2 φ +ψ cotφ (2.8)
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which is independent of the magnitude ofh. It is then easy to verify that ifH ext is oriented
as shown in figure 1(a), continuous and stable variations of the dipole directions are possible
throughout the interval 0< φ 6 90◦. (The lower bound in this inequality follows from the
exact condition tan(2φ) > 2 tan(φ−ψ) implied by (2.3) and (2.5).) However, ifH ext is rotated
into the second quadrant of thex–y plane so thatψ < 0 in figure 1(a), the second term in (2.8)
can become large and negative, and stability will cease as the magnitude ofH ext is increased.
Specifically, ifψ is adjusted to the particular valueψ = −0.5◦, equation (2.8) implies that a
transition to instability occurs when the dipoles have pivoted upwards to

φdisc≈ sin−1(|ψ |1/3) ≈ 12◦. (2.9)

The magnitude of the associated normalized field can then also be inferred from (2.6) and
(2.9):

hdisc≈ 3 cos3 φdisc≈ 2.8. (2.10)

This instability threshold corresponds to the magnet orientations shown in inset ‘B’ in
figure 1(b). The entire set of trajectories in this diagram—including the ‘jump transitions’
from B to C and F to G—form a hysteresis loop on theh–φ phase plane. The discontinuous
behaviour of this system can be followed in detail by supposing that initially there is no external
field (H ext = h = 0), and that both magnets are aligned with the +x-axis (φ = 90◦) as shown
in inset A. The pole-reversed configuration at E corresponds to the other trivial solution of (2.3)
whenh = 0, i.e.,φ = −90◦. If an external field is gradually switched on—pointing in the
fixedψ = −0.5◦ direction—and increased continuously throughout the interval 06 h < 2.8,
both magnets will respond by rotating through the angular range 90◦ > φ > 12◦: This smooth
evolution is represented by the trajectory joining A to B in figure 1(b). The discontinuous
jump that occurs at B has a simple physical interpretation: since figure 1(b) is essentially
a plane projection of the energy surface of the two-magnet system, the A→ B trajectory
actually corresponds to a valley bottom or trough that by virtue of the stability condition (2.4)
is surrounded by ‘higher ground’. At B, this trough terminates in a ledge that slopes downward
to the other stability valley that connects E, C and D. The energy decrease that drives the B→ C
transition is given by (cf (2.1))

U(11.63◦, 2.819,−0.5◦)− U(−23.03◦, 2.819,−0.5◦)

= µ2

2a3
{−9.268 + 9.334} ≈ 0.033

µ2

a3
. (2.11)

The hysteresis circuit is completed by the F→ G transition which flips the magnet orientations
from φ ≈ −168◦ at F toφ ≈ 157◦ at G. In this case, the energy loss

U(−168.37◦, 2.819, 179.5◦)− U(156.97◦, 2.819, 179.5◦) ≈ 0.033
µ2

a3
(2.12)

matches (2.11) because of the topographic symmetry of the energy surface. Overall energy
conservation implies that the total energy dissipated during the irreversible jumps from B to C
and F to G is equal to the energy gained along the reversible trajectories from G to B and C to F.

Experimentally, the slight misalignment between the axis of the Helmholtz coils and the
perpendicular bisector of the line joining the magnet supports seems unimportant. However,
since even this small deviation (|ψ | ∼ 0.5◦) spoils the symmetry about they-axis, its effects
are quite noticeable. For instance, the jumps from B to C and F to G reorient both magnets
by about 35◦; and if the symmetry breaking angleψ is switched from−0.5◦ to +0.5◦, the
hysteresis loop in figure 1(b) will be traversed in a clockwise rather than an anti-clockwise
direction. Figure 1(c) shows the curious hysteresis pattern that results when the fieldH ext is
exactly aligned with they-axis. In this instance, (2.3) and (2.5) imply that the stable trajectories
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consist of the (infinite) straight sections R–Q and P–S joined to the AQEP loop at the bifurcation
points P and Q [18]. Since there are no discontinuities, the system is reversible and determinate
everywhere except in the immediate vicinity of P and Q. The asymmetric indeterminacy of
these saddle points is due to an energy degeneracy. If, for instance, the magnets are rotated
along A→ Q by increasing the field to the critical valueh→ 3, their orientations will remain
fixed in the vertical direction,φ = 0◦, during all further field increases in the rangeh > 3.
However, in the event that the field is subsequently decreased belowh→ 3−, there is no unique
response built into (2.1), (2.3) and (2.5): the magnets will continue to pivot either towards A
(φ → +90◦) or E (φ → −90◦). A similar ambiguity occurs ifh is increased precisely to
3, and then lowered again: this manoeuvre positions the system at Q, and then swivels the
magnets back either towards A or E. If the field variations are increased to cover the entire
range,h < −3 ←→ +3 < h, extending beyond Q and P, the hysteresis response becomes
erratic: sometimes the magnets will turn around completely through the hysteresis loop AQEP
(cf section VI B of [19]), and at other times they will pivot through the half-cycles QES or
QAS. This type of variable hysteresis without irreversible jumps, i.e. Barkhausen pulses, has
been observed in iron whiskers (sections III D and IV D of [20]). Gallop’s simple example is,
of course, the antecedent of Hopf bifurcations [20a], and a forerunner of catastrophe theory
[20b, 20c, 20d].

2.3. Smooth Hamiltonian systems and discontinuous gradient systems

Quasistatic magnet rotations in the simple model system of figure 1(a) can be included in
the basic energy expression (2.1) by introducing a time dependence for the magnetic field,
h = h(t). The resulting equation of motion is then a special case of (1.1); and, according
to the preceding discussion, if the (gradual) field variations are bounded by|h| < 2.8, the
magnet response will be strictly reversible as in a smooth Hamiltonian system. The observed
transition to irreversible behaviour at|h| > 2.8 depends on a number of physical effects that
have been omitted from (2.1):

(1) Just past the instability points B and F in figure 1(b) the magnets are impelled across
the downwards sloping energy surfaces towards C and G by gradient forces−∇U .
This motion converts potential to rotational kinetic energy,Iω2/2. If nominal values
(µ ∼ 14.5 G cm3, a ∼ 5 cm,I ∼ 0.043 g cm2) are assumed, the energy decreases (2.11)
and (2.12) yield angular velocities of the orderω ∼ 92◦ s−1, equivalent to rapid jumps
from B to C etc in less than 0.4 s.

(2) The magnet motion also results in a coupling to several dissipative processes: (i) frictional
resistance at the pivot supports; (ii) rotational spin-down due to dipole radiation; and (iii)
magnetostrictive deformations of the ferromagnetic domains in the interior of the magnets.
In practice, the magnetization changes and warming due to the magnetic work associated
with (iii) are the most important dissipative processes [19]. The net result is that any
instability jump away from B or F is followed by a rapid (.3 s) re-equilibration at C or G.

(3) The mathematical description of the unstable equilibrium at B and F is deceptively simple.
The torques exerted by the external field and the mutual magnet interactions are so evenly
matched that both the first and second derivatives in (2.2) and (2.4) vanish. But it is
precisely this cancellation of forces that shifts control of the physics from the energy
expression in (2.1) to the dissipative processes mentioned above. Consequently, even
in this elementary two-magnet device—which seems to be stripped down to irreducible
simplicity—the root causes of irreversible behaviour are asymmetric boundary conditions
(electromagnetic radiation to infinity), and the redistribution of energy into microscopic
degrees of freedom (heating of the magnets).
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3.

3.1. Irreversibility and restorability in complex systems

The incidence of discontinuities in the two-magnet model is not an isolated curiosity. Rather,
it indicates the generic behaviour of more complicated gradient systems. It has already been
mentioned in section 2.1 thatN -component arrays of charges or magnets have approximately
ecN locally stable equilibrium states, wherec is a configurational entropy [21]. In the usual
energy landscape picture these states correspond to fixed localized minima. If changes are
induced by external fields or lattice distortions, it is convenient to represent the resulting
transformations by trajectories on ‘extended’ energy surfaces: these are simple generalizations
of the diagram in figure 1(b). The key idea is to exhibit the dynamics by adding extra dimensions
to the energy surfaces. This construction replaces the static picture of potential wells by
sets of troughs or valleys that show explicitly how the equilibrium states are transformed.
Figure 2 illustrates the situation for 16 cylindrical bar magnets supported by low-friction
bearings, as in figure 1(a), and arranged in the form of a 4× 4 square lattice. When the lattice
spacing (a) is very much larger than the length of the individual magnets (`), it is plausible
that the observed equilibrium patterns are determined solely by dipole interactions. And,
indeed, detailed computations, accounting for all 120 pairs of interactions, confirm that when
a ∼ 140 mm� 8.9 mm= `, the four configurations 4WSI–4WSIV shown in figure 2 are the
stable equilibrium solutions of the 4×4 square dipole problem. The network of trajectories in
figure 2 shows how these magnet patterns change as the lattice is compressed. Obviously, the
dominant effect of bringing the magnets closer together is to break the dilatational invariance
of the dipole interactions as higher multipolarities become more important. The net result is
that when the lattice is contracted toa ≈ 11.6 mm, the 16 magnets can appear in at least 36
distinct stable patterns.

Most of the 40 states in figure 2 are linked by irreversible transitions whose directions are
indicated by the arrowheads on the wavy lines. These jump discontinuities occur at the ends
of stability valleys in complete analogy with the B→C and F→G transitions in figure 1(b).
A new feature of the circuit diagram in figure 2 is that it lacks closed hysteresis loops. This
means that practically all of the dilations are irreversible as well as non-restorable. In simpler
cases, such distinctions are unimportant. For instance, the hysteresis circuit in figure 1(b) is
globally irreversible. Yet, any equilibrium state of the two-magnet system can be reached—or
restored—starting from any other equilibrium state merely by applying a sequence of magnetic
field variations. In contrast, repeated expansions and contractions of the 16-magnet lattice
between 11.6 mm6 a 6 36 mm irretrievably decant the system into two tracks connected to
the 4CS1 and 4UR2 configurations, irrespective of the initial state. Even the ‘bottom trough’
(the stability valley with the minimum energies) joining 4CS1 to 4WSI is not completely
restorable. Any expansion of the system that crosses the quasi-reversible fork ata ≈ 53 mm
has roughly an 80% chance of remaining in the valley leading to 4WSI—the lowest energy
dipole state fora & 140 mm—and a 20% probability of diverting into the side channel leading
to 4WSIII. Experiments and computer simulations confirm that both of the junctions at 53 mm
and 79 mm in figure 2 are saddle points similar to the bifurcations of Q and P in figure 1(c).
However, the topography of the junctions in figure 2 is asymmetric because these instabilities
are due to multipole interactions with complicated angular variations [22].
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Figure 2. Hysteresis network for 16 pivoted magnets supported by an expandable 4× 4
square lattice—shown in the inset. The solid straight lines represent magnet configurations that
remain invariant during smooth lattice contractions or expansions; curved lines indicate gradual
reorientations of the magnet patterns. The wavy lines capped by arrows denote irreversible jumps
similar to those shown in figure 1(b).

3.2. Irreversibility and restorability in complex systems (continued)

The general significance of these results can be summarized as follows. Let

H(ϑ1, . . . , ϑi, . . . , ϑN ;hc(t)) (3.1)

represent anN -magnet Hamiltonian, whereϑi denotes the orientation of theith magnet, andhc
is a hysteresis variable associated with lattice deformations or external fields. The physically
realizable states are a subset of the extremals determined by the common intersection of the
solutions of the equations (cf (2.2))

∂H
∂ϑi
= 0 i = 1, . . . , N. (3.2)

Since for every value ofhc there are generally many solutions (∼O(ecN )), it is convenient to
write these in the form

ϑ
(σ)
i = ϑ(σ)i (hc(t)) (3.3)

where the indexσ labels each distinct family of extremals. In quasi-static gradient systems
the stable equilibrium states are local energy minima. These states are subsets of the extremal
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solutions (3.3) whose associated Hessian matrices

He[ϑ
(σ)
i (hc(t))] =

(
∂2H

∂ϑ
(σ)
k ∂ϑ

(σ)
j

)
k, j = 1, . . . , N (3.4)

when evaluated atϑ(σ)i are positive definite (cf (2.4)). A necessary and sufficient condition for
a real symmetricN ×N matrix such asHe to be positive definite is that all of its eigenvalues
be positive. This property may be expressed in the compact form

He[ϑ
(σ)
i (hc(t))] � 0 (3.5)

which is an intuitive shorthand for sufficient conditions ensuring local stability on the extremal
setϑ(σ)i (hc(t)). Some exceptional cases are discussed in [23, 24]. Transitions to instability
generally occur whenever the Hessian becomes singular; that is when the determinant of the
matrix in (3.4) vanishes

det|He[ϑ(σ)i (hc(t))]| = 0. (3.6)

Finally, if the Hessian has at least one negative eigenvalue—indicating a downward slope on
the energy surface—it is natural to use the notation

He[ϑ
(σ)
i (hc(t))] ≺ 0 (3.7)

as a shorthand for sufficient conditions that the extremalϑ
(σ)
i (hc(t)) is unstable.

Reversibility in theseN -magnet systems simply means that there are extremalsϑ
(σ)
i (hc(t))

satisfying the stability criterion (3.5) for some continuous ranges of the variablehc(t). Within
these ranges, inverting the hysteresis sequences—i.e., reversing the quasi-static ‘velocities’
dhc/dt—results in retracing of the prior magnet configurations in complete analogy with the
behaviour of the reversible Hamiltonian systems in section 1. The limits of the reversible ranges
are determined by the Hessian singularity condition (3.6). Specifically, if det|He| vanishes
when the hysteresis variablehc on theσ th extremal reaches the particular valuehc(ts) at time
ts , then the system becomes unstable. In cases where the further evolutionhc(t), t > ts prods
the system into an unstable regionHe ≺ 0 (3.7), continuations along theσ -extremalϑ(σ)i are
impossible, and the system must ‘roll down’ the energy surface into another (not necessarily
unique!) locally stable extremalϑ(τ)i whereHe[ϑ

(τ)
i (hc(t))] � 0 for t > ts . Since ‘rolling’

is physically equivalent to a reorientation of the magnets there will be at least one value ofi

whereϑ(σ)i (hc(ts)) 6= ϑ(τ)i (hc(ts)): such a finite gap between instability and re-equilibration
corresponds precisely to the jump discontinuities illustrated in figures 1(b) and 2. Alternatively,
several stable extremals may intersect at a singular configurationϑ

sp

i where det|He[ϑspi ]| = 0.
In this situation the system can pass through theϑ

sp

i pattern without any discontinuous changes.
However, as illustrated by the junctions atQ andP in figure 1(c), and at 53 mm and 79 mm
in figure 2, repeated traversals of these furcations do not lead to repeatable results, and are
therefore also irreversible. The precise classification of the manifold branchings associated
with Hessian zeros is a prime concern of catastrophe theory [20c, 20d]: these references are
also a rich source of further examples of systems exhibiting singularities and hysteresis.

In extremely simple systemsirreversibility does not excluderestorability. This assertion
nominally applies to the hysteresis cycle in figure 1(b) where any stable magnet pattern can
be reset by field variations even if these include irreversible jumps. But the claim of ‘making
things new again’ depends on the level of abstraction. The two-magnet hysteresis cycle is
actually not retraced exactly if the energy losses accompanying re-equilibration are taken into
account. According to equations (2.11) and (2.12), every cycle dissipates about 0.1 ergs into the
internal degrees of freedom, resulting in a 10−8 ◦C temperature rise in each magnet. Prolonged
hysteresis can amplify such minute ageing effects until the entire system is transformed (e.g.
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Figure 3. Hysteresis network for 16 pivoted magnets supported by a 4× 4 trapezoidal hinged
linkage—shown in the inset. In contrast to figure 2, where the hysteresis variable is the lattice
spacinga, the complex hysteresis circuits in this diagram are generated by opening and closing the
linkage angleφ.

by heating beyond the Curie temperature where all ferromagnetic properties are completely
quenched). An important practical example is the cumulation of material defects in stress–
strain hysteresis leading to catastrophic fatigue failure.

Restoring the state of a system after an irreversible transition is only feasible if there
is at least another way ‘back’. In the lattice dilation example in figure 2, such reversions
are impossible for most states because only a few return paths are accessible when the
lattice is contracted. However, when there are more complex interlaced hysteresis circuits—
as illustrated in figure 3—adroit manipulation of the hysteresis variables can thread a path
backwards through the maze and restore some initial states. Restorations can also be achieved
by more drastic means. Suppose that the 16-magnet array in figure 2 were initially prepared
in the ferromagnetic (4UR4) pattern shown in the inset, and that subsequently the lattice was
expanded beyond 140 mm. The outcome would be either one of the irreversible transformations
4UR4→ 4WSI or 4UR4→ 4WSIII. Now, it is entirely feasible to recreate the ferromagnetic
pattern at a spacing of 140 mm by applying a strong external magnetic field parallel to the
lattice. As long as this field is maintained, the ferromagnetic pattern is essentially frozen in
place, and the lattice can be contracted again to a spacing of 11.6 mm. The final step is to
quench the external field. The net result of these double hysteresis variations is of course a
(nearly perfect) restoration of the initial 4UR4 state.

All of these examples suggest that in systems of this type (e.g. (3.1)) there are pervasive
correlations between increasing complexity and difficulties in finding return routes through
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the hysteresis networks. Further, since these return routes generally require complicated
manipulations of the hysteresis variables, it is evident that there are basic asymmetries between
the initial evolution of states and their restoration. This trend parallels the second law of
thermodynamics, but operates at a different level: whereas the standard connections between
irreversibility and the increase of entropy ultimately depend on theenumeration of states,
here the distinction between evolution and restoration depends on the relativecomplexity of
processes. In plain terms, this implies that the arrow of time points in the direction of the
simplest process! It is plausible that this conjecture applies to any system described by a
Hamiltonian (3.1) that is periodic in each of the configuration coordinatesϑi . In these cases,
H(ϑ1, . . . , ϑN ;hc(t)) is a real-valued function on a closed manifold equivalent to theN -
torus and topological estimates are available that set lower bounds on the number of extremal
solutions [25]. In particular, Morse theory implies that the number of extremalsϑ

(σ)
i (hc(t))

in (3.3) exceedsσ > exp(0.7N) [19]: This bound is consistent with the observation that the
number of locally stable states ofN -component Ewing arrays is O(exp(0.2N)). Since the
number of saddle points on an energy surface is comparable to the number of local minima,
the set of Hessian singularities (3.6) also increases exponentially withN . Perturbations of
such large systems are bound to generate hysteresis networks of great complexity.

4.

4.1. Restoring Humpty Dumpty?

The notion that time’s arrow is an emergent property of complex hysteresis systems is also
supported by probabilistic arguments. Combinatorial results [21] and studies of random
Hamiltonians [26, 27] confirm the intuitive expectation thatN -component systems have
complex energy surfaces whenN � 1. The corresponding number of Hessian singularities
(3.6) can be estimated from the zeros of random matrix polynomials [28]. And, finally, the
general characteristics of the associated hysteresis circuits can be inferred from Ramsey theory
[29] and the probabilistic geometry of networks [30]. Since all of these results—including the
topological bounds for theN−torus in section 3.2—remain valid for arbitrarily large values of
N , the asymmetries between evolution and restoration also extend to macroscopic hysteresis
systems. The tricky problem of restoring the shape of a bent metal paper clip is a familiar
example. And, in fact, many other practical situations involving fatigue, ageing and breakdown
are constrained by underlying limits of restorability. The general problem is the following:
given a set of initial conditions and a sequence of irreversible transformations, just how far
can a system be pushed before it reaches a limit of irreparable damage? It is important to
realize that ‘limit’ in this context only has a meaning with respect toparticular classes of
restorative processes. Even in the simple magnetic models of section 3.2 there are cases where
restorations are impossible using only lattice deformations, but other means relying on field
variations can still bring the systems back to their initial states. More realistic illustrations of
such asymmetric processes can be adapted from the theory of plasticity.

4.2. Restoring an elastic–plastic torsion spring

Figure 4 shows a system consisting of a rigid rod of length` attached to a horizontal support by
means of a frictionless pivot and an elastic–perfectly plastic torsion spring. As indicated, the
angle between the rod and the vertical is2. A vertical loadP is applied at the end of the rod,
with the convention that the positive direction is downward. This system has the following
attributes:



7592 B Bernstein and T Erber

Figure 4. A plastic system that is irreversible and restorable. A rigid rod of length` is attached to
a horizontal support by means of a frictionless pivot. The plastic element is provided by a torsion
spring connecting the rod and the support.

(i) It can be deformed into another state by a given set of forces.
(ii) Simple variants of this same set of forces cannot restore the original state.

(iii) However, a more general system of forcescanrestore the original state.

It is convenient to begin by describing the properties of the elastic–perfectly plastic torsion
spring.

4.2.1. Constitutive equations.In addition to the angle2, it is necessary to introduce three
other quantities—τ , the torque;µ > 0, the elastic modulus of the spring†; andk > 0, the yield
stress of the spring. Bothµ andk are material constants. The relation between2 andτ , i.e.
the constitutive relation, is history dependent and is that of classical elastic–perfectly plastic
behaviour. However, the present description may not be quite the usual one.

Instead of a single elastic relation between2 and τ , we shall consider an infinite
multiplicity of such relations, one for each value of an angleα, namely

τ = µ · (2− α). (4.1)

If (4.1) holds for a constant value ofα, we shall say that the spring is in theelastic regimeα.
This assertion will continue to be valid as long as (4.1) does not give a stress exceeding the
yield stress, i.e., for all torques|τ | < k. However, once the stress given by (4.1) exceeds this
bound, or|τ | > k, then the spring has left the elastic regimeα. In order to describe what comes
next, we shall assume that2 varies by increasing or decreasing in a piecewise manner, and
shall consider the particular situation where the spring, starting in the elastic regimeα ≡ α0,
experiences a monotonic increase of the difference|2−α0|. Increasing this value corresponds
to a loading.

In such a situation, beginning at the point whereµ · |2−α0| reaches the valuek, the spring
is in a plastic regime; that is, it experiencesyieldand|τ |will remain fixed at the valuek as long
as|2− α0| is non-decreasing. An alternate way of describing this behaviour is the following:
the relation (4.1) is always obeyed, but in an elastic regimeα remains at a constant value, say
possiblyα0, whereas in a plastic regimeα varies so as to keep|2− α| fixed atk/µ. Suppose
now that the spring is in the plastic regime, and thatα has reached a value, sayα1 > α0,

† Not to be confused with the magnetic moments considered in section 2.2.
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while loading. If this is followed by an unloading, the value of|2 − α1|, and consequently
also the value of|2 − α0|, will decrease. As a result, the spring will be in the elastic regime
α1, and will remain therein as long as|2− α1| does not exceedk/µ. These variations fairly
well describe the constitutive behaviour of the spring, except for one addtional qualification:
For purposes of the present discussion, it will be assumed that plastic yield occurs well before
|2− α0| reaches the valueπ/2.

Finally, we note that the behaviour of the spring can be modelled by the differential
equation

dτ

d2
= µ ·

[
Hν(τ + k)−Hν(τ − k)

]
(4.2a)

whereHν is the Heaviside unit step function

Hν(x) =
{

0 if x < 0

1 if x > 0.
(4.2b)

4.2.2. The initial elastic response of the system.According to figure 4, the torque due to the
vertical (positive downward) loadP is

τ = P` sin2. (4.3)

Suppose, for the sake of simplicity, that the initial value of2 is adjusted to2 = 0. We
shall argue that if all loads are restricted to the vertical direction, then the system permits
2 to be changed from zero to a value where the spring yields. However, once plastic yield
has occurred, vertical loadings cannot restore the spring and lever arrangement to its initial
configuration with2 = 0. Nevertheless, combinations of vertical and horizontal loadings can
reset the system to2 = 0.

In the elastic regime,α, the system responds to a given loadP by finding a stationary
minimum value of the equivalent potential

W = µ

2
(2− α)2 + P` cos2 (4.4)

or, explicitly

µ · (2− α)− P` sin2 = 0. (4.5)

These relations are the exact analogues of the corresponding expressions (2.1) and (2.3) that
describe the magnetic model in figure 1(a). In the initial state,α = 0, so that (4.5) simplifies
to

µ2− P` sin2 = 0 (4.6)

which has the trivial solution2 = 0. If other solutions with2 6= 0 exist, then evidently they
must satisfy

sin2

2
= µ

P`
(4.7)

which is possible only ifP > µ/`.
As usual, when there are multiple extremals, the physically relevant solutions can be

distinguished by stability criteria such as (3.5). In the present case, equation (4.4) yields

d2W

d22
= µ− P` cos2 (4.8)

whose sign—in analogy with (2.4)—determines whetherW has a maximum or minimum. We
note first that ifP` > µ, then (4.8) implies that d2W/d22 < 0 at2 = 0; and thereforeW has
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an unstable maximum at2 = 0. On the other hand, if2 6= 0 andP` > µ, then combining
(4.6) and (4.7) with (4.8) gives

d2W

d22
= P`

[
sin2

2
− cos2

]
(4.9)

which is positive for−π < 2 < π , an interval exceeding the range in which the spring initially
remains elastic. This assertion follows by noting that sin2 − 2 cos2 vanishes at2 = 0,
and has a positive derivative,2 sin2, for all |2| < π . Consequently, the stable solutions are
determined by (4.7) when2 6= 0. Indeed, when loaded, the spring is equally likely to bend
either to the right or to the left. To be specific, we shall assume that it bends to the right, i.e.
that2 > 0.

4.2.3. Non-restorability after plastic yield.Suppose that the spring has undergone plastic
yield so thatα > 0. Either2 = 0 is now within the elastic regimeα or it is not. If so, i.e. if
α 6 k/µ, then (4.5) implies thatα = 0, which we have just assumed is not true. Worse, even
if 2 > 0, equation (4.5) shows that

P = µ2− α
` sin2

→∞ as 2→ 0. (4.10)

So it is never possible to reach2 = 0 with a finite loadP . But even ifP could be increased
indefinitely in such a way that (4.5) continued to be valid, the magnitude ofα would remain at a
non-vanishing value,α > 0. As a consequence, any reversal in the sign ofP would only have
the effect of producing variations in the elastic regime for this positiveα value, and therefore
the system could never be returned to its initial state.

If 2 = 0 is not in the elastic regimeα, that is ifα > k/µ, then in order to return to2 = 0,
one must do so through plastic deformations. In this case, the value2 = 0 could be reached as
α changes with the fixed constraint|2− α| = k/µ. Therefore, if the initial condition2 = 0
is ever restored in the elastic regime, the correspondingα value would remain atα = k/µ;
and we can argue as before that any reversals of the sign ofP would leave the system in an
elastic regime withα 6= 0. Moreover, sinceµ|2− α| = k, equation (4.5) requires that

P` sin2 = k (4.11)

which shows thatP would have to go to infinity as2 approached zero. In any case, it is
not possible to resetα to zero, and therefore to restore the system to its original state. For
completeness sake, we note that these results are not restricted to the special choice of the
initial condition2 = 0.

4.2.4. Restoration after plastic yield.All of the preceding arguments show that the torsion
spring device in figure 4 is irreversible and non-restorable with respect to a restricted set of
load variations. However, if the vertical forceP is augmented by horizontal load components,
it is possible to adjust the torqueτ in an arbitrary manner. In particular, it is then feasible
to vary2 so that it is brought to a value of−k/µ during yield: at this point, since|2 − α|
remains fixed atk/µ during yield,α becomes zero again. Continuing on through the elastic
regime to2 = 0 results in a complete restoration of the system to its initial state.

5. Four different kinds of time

The conventional time variable ‘t ’ initially appeared in the Hamiltonian equations of motion
(1.1), and later was reintroduced in sections 2.3 and 3.2 to describe changes in the hysteresis
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coordinates associated with lattice distortions and magnetic field variations. In those contexts,
the direction of the arrow of time is indicated simply by the algebraic notation ‘+t ’ or ‘−t ’.
Evidently, there is a considerable gap—if not a total disconnection—between this standard
notion of time as a parameter and the suggestion that time and its arrows are emergent properties
of the transformations of complex systems. But these disparities are actually rooted in a lengthy
history: the extensive literature concerned with ‘time’ includes many qualitatively different
concepts regarding its duration and intrinsic nature, e.g. [31–50]. By linking together just
four different kinds of time from this large inventory—technical time; ordinal time; index
time; andprocesstime—it will become apparent that there is in fact a reasonable progression
leading from the usual time read off clocks and calendars to detecting the subtle alignments of
temporal arrows embedded in complex processes.

5.1. Technical time (NIST-7 and UTC)

Practical applications of dynamics, such as Hamilton’s equations of motion (1.1), depend on
relating the formal coordinates,qi andt , to specific physical frames of reference. The most
widely used space–time grids are descendants of an 1884 treaty establishing Greenwich Mean
Time (GMT) as the terrestrial standard, and designating the Greenwich Observatory as an
intercept of the prime meridian. As early as 1902, Poincaré cautioned that the proliferation of
standards of this kind could eventually blur the distinctions between conventions and ‘physical
reality’ [51, 52]. He insisted that all conventions, despite their practical necessity, were in
essence just artificial and largely arbitrary constructs. However, as shown later by Einstein
[53] and Kretschmann [54], this extreme position could lead to sterile assertions such as ‘. . .

covariance is merely a criterion concerning the mathematical formulation of physical laws
and has no bearing whatever on their actual content’. In fact, relativistic corrections are
indispensable for precision time keeping. Coordinated Universal Time (UTC), the current
successor to GMT, depends on the synchronous operation of about 254 clocks distributed
among 60 standard laboratories and 24 orbiting satellites of the Global Positioning System
(GPS) [55, 56]. Since the present accuracy of UTC is equivalent to±1 s in 107 years, it is
necessary to allow for at least 9 different time shifts due to special and general relativistic
effects. For instance, the slowing of moving clocks implies that the GPS clocks lag behind an
ideal clock situated at mean sea level (the geoid) by about 7.11µs per day; and NIST-7, the
current primary standard for the US, runs fast by about 15.55 ns per day relative to this ideal
clock due to a difference in gravitational potential. The fusion of physics and conventions
was carried still further by Schrödinger, who showed that the joint constraints of relativity and
quantum mechanics placed additional limits on the accurate layout of coordinate grids [57].
Nevertheless, quantum mechanics in the form of atomic clocks has turned out to be a help
rather than a hindrance [58].

In general, clocks may contain irreversible components such as escapements. But in all
cases, it is essential that every ‘tick’ or clock cycle restore an initial state that ensures that the
duration of the next cycle is an exact repetition. In this respect, ideal clocks are devices with no
memory. Secular drifts of periodicity due to wear and ageing can occur only in complex systems
with sufficiently many degrees of freedom to support evolutionary hysteresis, cf section 3.2.
The superior stability of atomic clocks utilizing linear ion traps is partly due to the fact that
the individual atoms cannot ‘run down’ because there are no smaller degrees of freedom.
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5.2. Ordinal time in dynamical systems

The shift away from clock time to more general measures of evolution can be illustrated with
the help of dynamical systems theory (e.g. [59]). In this formalism the evolution of a system
through a set of states,x0, x1, . . . , xj , is described by the iteration of a mapping, i.e.

x0 → x1 → x2 → · · · → xj
l l l

x0 → f (x0) → f 2(x0) → · · · → f j (x0)

(5.1)

wheref 2(x0) = f (f (x0), etc, or, equivalently

f 2 = f ◦ f (5.2)

where ‘◦’ denotes composition. In analogy with the0-space of classical statistical mechanics,
the xj specify the complete configuration of the system. For simplicity, it is convenient to
assume that this configuration spaceM is an open subset ofm-dimensional Euclidean space
Rm. An array of the form (5.1) is usually referred to as a ‘discrete time’ dynamical system
because of the plausible identification of the iteration index with multiples of a fixed time
interval. If f is a diffeomorphism, i.e., bothf and the inverse functionf −1 are continuously
differentiable, then the dynamics described by (5.1) is sufficiently regular so that the sequence
linking x0 toxj can be retraced in inverse order by repeated applications off −1 toxj . However,
since the two functionsf andf −1 are generally not related by reflections in the directions of
any forces or momenta, and may be quite different in structure and complexity, retracing the
states in (5.1) in inverse order does not correspond to time reversal in ordinary Hamiltonian
dynamics. Rather, the two-step processx0 → f (x0) = x1, followed byf −1(x1) → x0, or
concisely

f −1 ◦ f = j (5.3)

wherej (x) = x is the identity function, is the mathematical description of therestorationof
a state.

Similar issues of interpretation occur in dynamical systems with continuous time. For
instance, the logistic map

g(x) = 2x(1− x) 06 x 6 1 (5.4)

can be embedded in an infinite family of functions of the form

gt (x) = 1
2{1− |1− 2x|2t } (5.5)

where−∞ < t < +∞ [60]. For integer valuest = 1, 2, . . . , n, this expression generates the
iterates of the logistic mapg(x). Furthermore, (5.5) satisfies the semi-group property

gt+s = gt ◦ gs (5.6)

for all reals andt . In particular, therefore, ifn� 1 and ln|1− 2x| is bounded, equation (5.6)
yields the estimate

g1+1/n(x) = g(x) + O

(
1

n
ln |1− 2x|

)
(5.7)

which conforms to the intuitive expectation that short intervals of time are correlated with
small changes of state. All of these properties imply thatgt (x) is a two-way flow in ‘time’
that generalizes the discrete dynamics in (5.1).

The formal resemblance of these expressions to classical mechanics can be accentuated
by introducing a new function

gt (x) = z(t) 06 z 6 1
2 (5.8)
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in which the notation highlights the traditional role of ‘time’ as the independent variable and
supresses the (dimensionally essential) dependence on the initial statex0. It is then easy to
check that (5.5) and (5.8) imply that

[ln(
√

2
√

2
)]−2 d2z

dt2
= (2z− 1){[ln(1− 2z)]2 + ln(1− 2z)} (5.9)

which re-expresses the dynamics in a form reminiscent of Newton’s ‘F = ma’.
At first glance, it seems that equation (5.9) implies a time reversibility of the dynamics

because the second derivative remains unchanged whent is replaced by−t . But, of course,
the symmetries of differential equations are not necessarily shared by their solutions (i.e.,
‘spontaneous’ symmetry breaking); and, in this case, it follows directly from (5.5) that when
0< x < 1,

lim
t→∞ g

t (x)→ 1

2
whereas lim

t→−∞ g
t (x)→ 0. (5.10)

This asymmetric behaviour affects the identification of the mathematical backward flow,gt (x),
t < 0, as a physical time reversal. Specifically, equation (5.6) implies that

g−1 ◦ g = g0 (5.11a)

and also

g0 ◦ g0 = g0. (5.11b)

However, despite the notational resemblance tof −1 in (5.3),g−1 does not signify an inverse
function because the non-monotonic logistic map (5.4) has no inverse. This is correlated with
the technical point that any function satisfying (5.11b) is said to be idempotent and is not
necessarily equal to the identity functionj . In the present example (5.5) shows thatg0 is
actually a restriction ofj . The general conclusion is that dynamical systems satisfying (5.11a)
and (5.11b), whereg0 6= j , do not correspond to time reversal. Quite the contrary, in these
cases (5.11a) describes thenon-restorabilityof states.

5.3. Index time: labelled sequences of configurations

After dispensing with the tightly constrained machinery of functional iterations in (5.1), all
that remains is the weaker notion of aggregates of states that may be ordered by means of
some identifying tag. In a stimulating article ‘The Emergence of Time and Its Arrow from
Timelessness’, J B Barbour argued that this kind of ‘relative configuration space of the universe’
is actually sufficient to provide a complete description of events (pp 405–14 of [47]). He
introduced this drastic demotion of time by quoting the results of a straw poll conducted
among 42 participants at the Conference whose Proceedings appear in [47] (Magazon, Spain,
1991). The question was:

Do you believe time is a truly basic concept that must appear in the foundations of
any theory of the world, or is it an effective concept that can be derived from more
primitive notions in the same way that a notion of temperature can be recovered in
statistical mechanics?

Twenty responded with the opinion that there was no time at all at a fundamental level; ten
believed that time did exist at some basic level; and the rest abstained. Obviously, the largest
group among these experts shared Poincaré’s doubts concerning the fundamental significance
of time.

If time is indeed a redundant concept then, contrary to the traditional view that different
configurations are realizedat different instants of time, it is Barbour’s basic contention that
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they are the instants of time. As a corollary, intervals of time are then derived as measures
of the differences between configurations—which may be normalized by reference to a
clock. Parallel processing computers form a class of practical devices whose operations
precisely model Barbour’s approach [61]. An obvious means of synchronizing multiple
processors running simultaneously is to require that the entire system be controlled by a
master clock so that a definite time can be ascribed to every elementary switching operation
regardless of which processor is involved. However, since this method is basically equivalent
to linearizing the time-stream of computations, it cannot achieve the speedup theoretically
possible with parallel processing. The programming schemes used in practice avoid these
wasteful references to a common (artificial) time base by organizing the computations as logic
streams whose interconnections depend only on their relative order. In this setting, Barbour’s
relative configurations correspond to ‘key points’—or, sets of signals within circuits—which
are activated by ‘cones of logic’ originating from prior computations [62].

There are, however, many experimental situations involving quantum mechanics where
it is not possible to distinguish between contiguous configurations. A prime example that
updates Schrödinger’s concerns regarding the operational meaning of quantum time is photon
tunnelling through micron-thick dielectric mirrors [63–65]. The key result inferred from two-
photon interference measurements is that the apparent tunnelling velocity of single photons
traversing a dielectric barrier may be superluminal, (1.7± 0.2)c. As might be expected, this
observation has reignited long standing controversies among partisans of different measures
of ‘microtime’ such as Larmor time, phase time, group-delay time, etc; and has also exposed
ambiguities in the interpretation of experimental procedures [65, 66]. In any event, it is clear
that quantum mechanics has had a contradictory influence: on the one hand, atomic clocks
are the best means for obtaining ever more refined ‘configuration pictures’ that are the raw
material for the Barbour program; but on the other hand, indecomposable processes, such as
barrier tunnelling, show that Zeno’s arrows still carry a sting.

And, speaking of arrows, where is the arrow of time in this amorphous scenario? Barbour’s
conjecture

. . . is that the ultimate origin of the arrow of time is the asymmetric structure of
the configuration space of the world.. . . Potentials are always represented as hills,
valleys, wells, and walls. The configuration space of the world must be criss-crossed
by the most extraordinary mountain ranges, ocean troughs, odd-shaped obstacles, and
so forth. Above all, superimposed on everything is one prevailing direction, arrow if
you like . . . (p 411 of [47]).

No doubt this is an eloquent and sweeping proposal intended to provide ‘. . . a genuine
explanation of the arrow of time. . .’. But lacking any substantive evidence, it remains an
aspiration rather than a blueprint for specific research. Nevertheless, this train of thought may
be continued along more promising lines by switching to a qualitatively different kind of time.

5.4. Process time: time’s arrows as emergent properties of complex processes

The generous distribution of arrows in figures 1(b), 2 and 3 shows that even simple gradient
systems can exhibit a great variety of irreversible transitions. These diagrams also serve as
reminders that irreversibility is not an elementary property of a single state or a grouping
of states, but rather characterizes the processes that transform states into other states. The
appearance of so many ‘arrows of time’ in these figures is due to the fact that these diagrams are
not merely energy landscapes, but also incorporate—in the simplest possible way—the flow of
transformations induced by external agencies such as hysteresis variables [67]. In other words,
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the asymmetries conjectured by Barbour are evident in these diagrams simply because these
representations contain more information than the configuration spaces considered previously
in section 5.3.

In complex systems, it is generally not possible to associate a unique arrow of time with
a set of transformations. For instance, if a state A is irreversibly transformed to a state B,
and B is changed back again to A by other means that ensure that the restoration is perfect,
then evidently the reset state A has no memory of the excursion to B, and the overall process
does not generate an intrinsic arrow of time—even though technical time will keep on ticking
throughout the interchanges A→ B → A. This situation is illustrated by the deformation
of an elastic–plastic torsion spring discussed in section 4.2. In this case, A is represented
by the initial state,2 = 0, in equation (4.3), and B corresponds to the state of the system
after plastic yield. The basic point of this example was to demonstrate that the irreversible
A → B transformation was inherently simpler than the B→ A restoration. Suppose, now,
that a set of torsion springs were equally apportioned among states A and B. Since this spread
removes the prejudicial effects of initial conditions, the only asymmetry available to influence
any ensuing dynamics is that the A→ B transitions are simpler to manage than B→ A.
Under these circumstances it is plausible to assume that an arrow of time points in the ‘easy’
direction A→ B. An asymmetry principle of this kind is roughly analogous to the preferential
population of states favoured by statistical weights or the greater sizes of capture basins on
energy landscapes; but complexity measures suited for ranking trends among sets of processes
are qualitatively more complicated [68].

The entire series of examples outlined in sections 1–4 illustrates the parallel development
of complexity and the associated emergence of arrows of time. The initial example—a
Hamiltonian invariant under time reversal (1.1)—represents a null case: here there are no
arrows of time because all possible dynamics have time reversed complements of equivalent
complexity. But, as indicated previously, not all null cases are tautologies. Hibernation,
dormancy, and suspended animation all correspond to a partial or complete blunting of time’s
arrows in biological systems. Apart from the general slowing of chemical reactions due to
decreasing Arrhenius factors at low temperatures, these suppressions of time are linked with
complexity and technology. For instance, the successful reanimation of single frozen cells
goes back 50 years [69], whereas assisted reproduction with cryopreserved blastocysts (&200
cells) became available only within the last decade [70]. Obviously, both technical time as
well as process time depend on the state of the art.

Arrows of time can also be switched on and off in quantum system. Measurements
of ‘old’ muonium (µ+e−) [71, 72], time-selected atomic double resonance [73], and time-
dependent M̈ossbauer spectra [74, 75] all confirm that resonances associated with excited states
of quantum systems become narrower with increasing age. This trend is, of course, consistent
with the time–energy uncertainty relations, but the underlying connections are not trivial since
refined analyses show that there are no unique correlations between the time distributions of
decays and energy spectra [76, 77]. The progressive narrowing of resonances suggests that the
duration of the excited states is associated with an intrinsic time scale or arrow. In contrast,
quantum systems can persist indefinitely in their ground states without any signs of ageing or
arrows of time. By means of suitable population transfers between ground and excited states, it
is possible to turn the arrows of time on and off, and thereby gain some insight into the physical
meaning of ‘time in’ versus ‘time out’ in quantum systems. A clean test case is provided by
the double-resonance fluorescence of a single trapped ion in an arrangement where the strong
fluorescence can be used to monitor transitions of the weak fluorescence—this is the essence of
Dehmelt’s shelved electron scheme [78]. Suppose that initially an electron is promoted from a
ground state to a long-lived excited state, say, the2D5/2 level of198Hg+ with a half-life of 0.1 s



7600 B Bernstein and T Erber

[79, 80]. If after a time interval1t1 . 0.1s no decay has occurred, transfer the electron back
to the ground state with coherent light pulses [81, 82], and wait for another time interval1t2.
Then transfer the electron back up to2D5/2 with another set ofπ -pulses. Suppose that this
second shelving lasts for a time1t3 until spontaneous emission finally returns the electron to
the ground state2S1/2. In analogy with the preceding, the theoretical expectation is that long
shelving times will be correlated with a subset of extremely sharp spectral lines [80, 83, 84].
Similar effects are routinely exploited in the construction of some atomic clocks. However, in
the present case, the effective duration of the shelving time has been deliberately complicated
by the adiabatic population transfers between2D5/2 and2S1/2. Although it seems obvious that
the length of the intermediate time out (1t2) in the ground state should have no effect on the
spectral narrowing, the junction between1t2 and1t3, i.e. the transition between time out and
time in, is not clearly defined. Furthermore, if1t2 is sufficiently short, a coherent memory of
1t1 might survive to influence the final decay spectrum.
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